

A new type of white <u>light-e</u>mitting <u>d</u>iode using fluorescent <u>si</u>licon <u>c</u>arbide (LEDSiC)

Acknowledgement: Innovation Fund Denmark (No. 4106-00018B)

DTU Fotonik Department of Photonics Engineering

Agenda

- Participants: 12 Danish partners (Leif Jensen; Flemming Jensen; Berit Herstrøm; Carsten Dam-Hansen; Paul Michael Petersen; Yiyu Ou; Yi Wei; Li Lin; Weifang Lu; Jiehui Li; Ahmed Fadil; Haiyan Ou)
- Location: S04 in building 101

Agenda:

- 10:00-10:05 Status of the project by Haiyan
- 10:05-10:25 Main results on 'Hybrid structures for luminescence enhancement of fluorescent SiC' by Yiyu
- 10:25-10:45 Main results on 'PL enhancement of <6H> bulk SiC by localized surface plasmon' by Yi
- 10:45-11:00 Coffee/Tea break and discussion
- 11:00-11:20 Main results on 'Porous SiC' by Weifang
- 11:20-11:40 Main results on 'Fabrication and characterization of GaN LEDs' by Li
- 11:40-11:55 Main results on 'Package of LEDs' by Jiehui
- 11:55-12:00 Concluding remark by Haiyan
- 12:00-13:00 Sandwich and discussion

Work packages

- **WP#1** f-SiC growth and optimization
- WP#2 MOCVD growth of GaN based LED on f-SiC
- **WP#3** Efficiency enhancement of LED in term of light extraction
- WP#4 Processing and optical characterization of white LED device for general lighting

Project structure and division into work packages

Status

- Epitaxial growth: boron-nitrogen (B-N) co-doped f-SiC
- MOCVD growth: GaN blue LEDs on SiC substrates

At DTU:

- **Surface nanostructuring** on the f-SiC surface to enhance the light extraction efficiency
- Surface plasmon for emission efficiency enhancement
- **Porous SiC** and passivation for an alternative light source
- A post-growth **LED processing flow** (photolithography, ICP etch, n and p contact, etc.) is being developed in the cleanroom of DTU Danchip
- LED package for system application

Main manpower:

Main	WP	Focus	Main activities	
participants	invol ved			
Ph. D student Yi Wei	WP1	f-SiC material growth	1. 2. 3.	Growth of source material using physical vapor deposition (PVD) method Growth of epitaxial layer using fast sublimation growth process (FSGP) Material characterization (SIMS, X-ray diffraction, carrier lifetime, photoluminescence etc.) for optimization of the material growth
Ph. D student Li Lin	WP2, WP3, WP4	The fabrication and optimization of LEDs for general lighting	1. 2. 3. 4. 5.	Post processing of the LED devices including mesa etching, electrode deposition, etc. Surface nanostructuring and passivation; On-chip LED tests (IV curve, IP curve, efficiency, CRI, etc.) Package of the LED devices LED test and evaluation for general lighting
Postdoc Yiyu Ou	WP1, WP2, WP3, WP4,	MOCVD growth of GaN on top of f-SiC for a complete LED device The fabrication and optimization of LEDs for general lighting	1. 2. 3.	High efficiency GaN LED growth on f-SiC by using MOCVD Material characterization of the grown GaN LED by using SEM, TEM, X-ray diffraction, etc. Optical characterization of the complete LED device by using electroluminescence for efficiency and CRI, etc.

Main manpower+:

	Main	WP	Focus	Main activities		
	participants	invol				
		ved				
	Ph. D student	WP1	f-SiC material growth	1.	Passivation of surface textured f-SiC	
R	Weifang Lu			2.	Fabrication and passivation of porous SiC	
(There is a second seco	Visiting Ph. D	WP3,	The fabrication and	1.	On-chip LED tests (IV curve, IP curve, efficiency, CRI, etc.)	
	student	WP4	package of LEDs for	2.	Package of the LED devices	
	Jiehui Li		general lighting	3.	LED test and evaluation for general lighting and visible light communication	
_	Postdoc	WP1,	Surface plasmon	1.	Surface plasmon enhanced NUV LED	
			enhancement of f-SiC	2.	Surface plasmon enhanced f- SiC	
	Ahmed Fadil					

PL enhancement on <6H> bulk SiC by Ag NPs and Al2O3 thin film coating on substrate - Yi Wei

- Motivation:
 - N-doped <6H> SiC: Luminescent material with active layer ~ 100nm.
 - Ag NPs: Inducing localized surface plasmon for PL enhancement.
 - Al2O3 thin film: Tunning λ_{peak} of LSP & Oxidation prevention.
- Experimental Investigation:
 - Temperature of rapid thermal annealing (RTA) of Ag thin film.
 - Method of Al2O3 deposition.
 - Thickness of Ag thin film (resulting in different size of Ag NPs).

Different Ag thin film thickness & RTA at 350 degree & Al2O3 deposition using ALD

Conclusion:

- Al2O3 thin film will further reduce PL but cause λ_{peak} shift;
- LSP is observed, in which the range depends on Ag NPs size;
- The photon lifetime will be decreased by Ag NPs, in which can be further decreased when coated with Al2O3.

LEDSiC project meeting on April 6, 2016 06/04/2016

Fabrication of hybrid structures on SiC

- A combination of microstructure (~3µm) and nano-structure (100-200nm)
- Method: speical photolithography with nanopatterning
- Larger luminescence enhancement than pure nano- or micro-structure

Fabrication of nanopillar structure LED

- To reduce the QCSE in Ο QWs by releasing the internal strain
- Method: nanopatterning Ο with dry etching
- Significant luminescence 0 enhancement: more than 4 times

1 Fabrication of porous SiC by anodic oxidation method

The SiC anodic etching in HF solution could be described with two steps, oxidation of SiC and dissolution of the formed SiO_2 :

Oxidation: SiC + 6OH⁻ \rightarrow SiO₂ + CO₂ + H₂O + 2H⁺ + 8e⁻

Dissolution: $SiO_2 + 6F^- + 2H^+ \rightarrow H_2SiF_6 + H_2O + 4e^-$

Schematic diagram of the experimental setup for anodic oxidation

①SiCrystal 6H-SiC	② Tankeblue 6H-SiC
Thickness:250µm, N-doped, on-axis, Si-Face polished, MPD<100/cm ²	Thickness:430µm, B-N co-doped
	Double sides polished with Si face CMP

2 Passivation by atomic layer deposited Al₂O₃ and TiO₂ film

The surface chemistry reaction during Al_2O_3 and TiO_2 ALD (atomic layer deposition) deposition:

1st half-reaction: $Al-OH + Al(CH_3)_3 \rightarrow Al-O-Al(CH_3)_2 + CH_4$ 2nd half-reaction: $Al-O-Al(CH_3)_2 + 2H_2O \rightarrow Al-O-Al(OH)_2 + 2CH_4$

1st half-reaction: $Ti-OH + TiCl_4 \rightarrow Ti-O-TiCl_3 + HCl$ **2**nd half-reaction: $Ti-Cl + H_2O \rightarrow Ti-OH + HCl$

Cross-sectional SEM images of SiCrystal sample (360 min): (a) top layer, (b) middle layer and (c) bottom layer, and covered with 20 nm thick TiO_2 .

SiCrystal samples

Tankeblue samples

Fabrication of LED devices

c) Formation of p-contact (current spreading layer) to p-GaN

14 DTU Fotonik, Technical University of Denmark

d) Formation of p-pad to p-contact & n-contact to n-GaN (metal deposition at the same time) Presentation name 17/04/2008

Department of Photonics Engineering

Structure of a single LED after fabrication

DTU

Electro-luminescence of the LED devices

Top view of the LEDs by **SEM**

Department of Photonics Engineering

DTU

LED Structures:

Department of Photonics Engineering

LED package processes:

Jiehui Li

LEDSiC project meeting on April 6, 2016 06/04/2016

Current Challenges for discussion

- Metal surface adhension for wire bonding
- Blue emission from porous SiC

Advisory board

- Satoshi Kamiyama. Meijo University, Japan.
- ???

Plan for the next 3 months:

- To conclude on the enhancement effect of surface plasmon: does it work? How much is the potential?
- Fabrication of NUV LED and improve the efficiency of the device by surface plasmons, nanopillars, and nanostructuring.
- To make blue emission out of porous SiC
- Make packaged device for demonstration

Funding application:

To secure a longer period for Jiehui and Ahmed

Publications

- Yiyu Ou , Meng Xiong, Weifang Lu, Ahmed Fadil, Valdas Jokubavicius, Mikael Syväjärvi, Paul Michael Petersen, and Haiyan Ou, Efficiency enhancement of fluorescent SiC for white LED application, The 4th international Workshop on LEDs and Solar Applications, March 30-31, 2016, Nagoya, Japan.
- Haiyan Ou, Weifang Lu, Yiyu Ou, Valdas Jokubavicius, Mikael Syväjärvi, Philipp Schuh, Peter Wellmann, Yoshimi Iwasa, Satoshi Kamiyama, Passivation of surface-nanostructured f-SiC and porous SiC, The 4th international Workshop on LEDs and Solar Applications, March 30-31, 2016, Nagoya, Japan.
- •
- Submitted:
- Conference paper:
- 3. Weifang Lu, Yoshimi Iwasa, Yiyu Ou, Satoshi Kamiyama, Paul Michael Petersen, and Haiyan Ou. "Photoluminescence enhancement in porous SiC passivated by atomic layer deposited Al₂O₃ films" (submitted at CLEO:2016- Laser Science to Photonic Applications)
- Journal papers:
- 4. Weifang Lu, Yiyu Ou, Valdas Jokubavicius, Ahmed Fadil, Mikael Syväjärvi, Paul Michael Petersen, and Haiyan Ou "Morphology and optical properties in nano-textured fluorescent 6H-SiC covered by atomic layer deposited titanium oxide" (submitted to Physica Scripta).
- •
- To be submitted:
- 5. Weifang Lu, Yiyu Ou, Paul Michael Petersen, and Haiyan "Passivation effect of atomic layer deposited Al₂O₃ and TiO₂ on photoluminescence of anodically etched porous 6H-SiC" (will be submitted at Optical Material Express Feature Issue: Two-Dimensional Materials for Photonics and Optoelectronics).
- 21 DTU Fotonik, Technical University of Denmark

Project management

Order	Meeting date and place	Participants	Program	Follow-up
1.	Kick-off,Sept.2, 2015 DTU	All partners, Satoshi Kamiyama	refer	
2.	Dec.11, 2015, DTU	Internal (2PhD students+1 postdoc+Haiyan)		 Report hand-in before March 1, 2016 Li, Commercial LED epiwafers on SiC substrate
3.	March 30, 2016, Meijo	Workpackage leader		
4.	April 6th, 2016, DTU	Danish partners		
5.	September xx, 2016, DTU	All partners		
6.	Dec. xx, 2016, DTU	Danish partners		

DTU Fotonik Department of Photonics Engineering

LED package

Jiehui Li 6th April 2016

06/04/2016

Jiehui Li

Outline

Department of Photonics Engineering

LED package structures

DTU Fotonik Department of Photonics Engineering

The characterizations of GaN-LED

LED epitaxial structure

SEM image of Large-LED

- Epitaxial: Commercial green GaN-LED
- Large LED chip size: 428 μm × 428 μm p-pad diameter: 142.3μm n-contact: 187.6μm
- P-contact: Ni/Au
- p-pad & n-contact: Ti/Au
- Turn-on voltage: about 2V @ 100mA

Normal LED (2V,100mA)

LED chip dicing by using Saw:

DTU Fotonik Department of Photonics Engineering

- Blade height: 0.20mm Feed speed: 0.20mm/s
- Yield: about 30%-40%
- Unexpected line and dislocation occurred

Blade height: 0.25mm Feed speed: 0.15mm/s

- Better cutting effect has been achieved
- Yield: More than 90%
- Blade height: 0.23mm
 Feed speed: 0.01mm/s (0.07mm/s)
- ✤ Yield: near by 100%
- Much better than last time
- Best parameters for dicing

Die bonding and curing:

- Clear epoxy die attach adhesive GCM-3100 was used to solder the GaN-LED chip on the carrier.
- Dispensing LED chip die bonding material on the hot plug.
- Take the LED chip from blue tape, and put it in the LED die bonding material on the hot plug.
- Curing on the hot plate.

(Curing: 90min @ 170°C)

(Curing: 30min @ 120°C)

DTU Fotonik Department of Photonics Engineering

Ball Wire-bonding:

- Au wire diameter: 25µm
- Ball diameter: about 90µm

Parameters setting:

1 st power	1	2 nd power	1.5
1 st Time	3	2 nd Time	3
1 st Force	2	2 nd Force	2
Loop	6	Tail	2.5
Ball size	4.4	Temperature	120°C

Ball Wire-bonding:

Metal adhesion is the key to success for wire-bonding.

- The bonding was done by a combination of temperature, pressure and ultrasonic power applied to the wire.
- Before annealing, the p-pad is very easy to fall off from the p-contact.
- Annealing: 5min @ 500°C in N₂
- The wires are fine when bonding from test board to chip or from chip to test board.

Before annealing (30nm Ti / 400nm Au)

After annealing (5min @ 500 $^\circ\!\mathrm{C}$ in N_2)

- Annealing is one of the main methods to enhance the metal adhesion.
- But the performance of LED will become weakened after annealing.

Department of Photonics Engineering

Filling and curing:

- The lens was covered on the LED chip after wire-bonding.
- The silicone gel was filled into the slit • slowly between the chip and lens from the small hole in the edge of lens.
- Curing: 1h @ 80°C in the oven.

Packaged green GaN-LED lamp

Hazard bubbles:

- Hinder electron transport
- Damage the internal structure
- Paralysis of lighting system, Leakage current and dead lights

Avoid bubbles:

- Before filled, remove all the bubbles of silica gel via placed in the desicator for about 1-2h.
- The speed of filling is slower.

DTU

Summary

***** The package processes for face-up LED device have been completed.

But the processes still need to be optimized.

- Metal adhesion need to be enhanced for wire-bonding.
- Avoid bubbles when filling silicon gel and curing.

***** Next work:

- Optimize the device process for wire-bonding.
- Improve the performance of LED device.
- Optimize the package processes for the nanostructure LED device.

DTU Fotonik Department of Photonics Engineering

Thank you !

06/04/2016

Jiehui Li

Fabrication and characterization of GaN LEDs

Li Lin

Outline:

- **1. Fabrication process of GaN LEDs**
- 2. Characterization of GaN LEDs
- 3. Adhesion of metal contacts
- 4. Conlusion
- 5. Future plans

Outline:

- **1. Fabrication process of GaN LEDs**
- 2. Characterization of GaN LEDs
- 3. Adhesion of metal contacts
- 4. Conlusion
- 5. Future plans

Fabrication of GaN LEDs

Final structure of a GaN LED

Department of Photonics Engineering

1. Formation of GaN mesas

The resist pattern for formation of silicon dioxide mesas

e) Etch of GaN mesa by ICP and then

remove silicon dioxide by 5% HF

Department of Photonics Engineering

2. Formation of p-contacts

Department of Photonics Engineering

3. Formation of p-pads and n-contacts

a) Formation of resist pattern by negative photolithography b) Metal deposition of 30-nm Ti and 200-nm Au by e-beam evaporation and then liftoff by ultrasonic

The resist pattern for n-contact & p-pad metal deposition

Sapphire

n-contact & p-pad after fabrication

Outline:

- **1. Fabrication process of GaN LEDs**
- **2. Characterization of GaN LEDs**
- 3. Adhesion of metal contacts
- 4. Conlusion
- 5. Future plans

Characterization of GaN LEDs

Electro-luminescence of the LED devices

I-V Curve of GaN Green LED on Sapphire

Outline:

- **1. Fabrication process of GaN LEDs**
- 2. Characterization of GaN LEDs
- **3. Adhesion of metal contacts**
- 4. Conlusion
- 5. Future plans

Bad adhesion of n-contacts

After liftoff assisted with ultrasonic for removal of 30-nm Ti & 200-nm Au:

- Most of n-contacts flaked off (about 10 survived in 96 LEDs)
- The shapes of surviving n-contacts are not complete

Reasons behind the bad adhesion:

- Surface roughness (especially the etched surface of n-GaN)
- Residual resist after development in the areas for n-contact metal deposition
- The GaN surface is not clean enough

Department of Photonics Engineering

Cones in the etched areas

Many cone structures can be observed by SEM in the etched areas including the n-contact areas

Reasons behind the cone structures in the etched areas:

Reasons behind the cone structures in the etched areas:

Possibility 1:

5) ICP etch of GaN

Fabrication and characterization of GaN LEDs

Solution: Formation of silicon dioxide mesa by wet etch process (BHF)

surface is quite clean also in the inspection by SEM

Be careful of the resist structure quality (overdeveloped resist mesa)

Solution: Formation of silicon dioxide mesa by wet etch process (5%HF): Much more aggresive than BHF

When etch in 5% HF hits the limit of required mesa size, there are still residual silicon dioxide in the areas to be etched by ICP

If the oxide in the areas to be etched is completely removed in 5% HF, the mesa is damaged a lot due to penetration of HF into the interface

Residual silicon dioxide afte imcomplete etch in 5% HF introduces a lot of roughness druing ICP etch of GaN

Solution: Formation of silicon dioxide mesa by wet etch process (BHF)

ICP etch of GaN & oxide removal

P-contact formation

Sucessful formation of p-contacts, p-pads and especially the n-contacts after liftoff

Cone structures barely observed by SEM

Still a few cones observed, might be from silicon dioxide sputtering

Bad adhesion of n-contacts

After liftoff assisted with ultrasonic for removal of 30-nm Ti & 200-nm Au:

- Most of n-contacts flake off (about 10 survived in 96 LEDs)
- The shapes of surviving n-contacts are not complete

Reasons behind the bad adhesion:

- Surface roughness (especially the etched surface of n-GaN)
- Residual resist after development in the areas for n-contact metal deposition
- The GaN surface is not clean enough

Solution: A 1-min O₂ plasma process with 40 W before deposition of p-pads and n-contacts

a) Formation of resist pattern by negative photolithography

b) Metal deposition of 30-nm Ti and 200-nm Au

Sucessful formation of n-contacts after liftoff

Bad adhesion of n-contacts

After liftoff assisted with ultrasonic for removal of 30-nm Ti & 200-nm Au:

- Most of n-contacts flake off (about 10 survived in 96 LEDs)
- The shapes of surviving n-contacts are not complete

Reasons behind the bad adhesion:

- Surface roughness (especially the etched surface of n-GaN)
- Residual resist after development in the areas for n-contact metal deposition
- The GaN surface is not clean enough

Solution: Add 30 sec 5% HF to clean the GaN surface for metal deposition

a) Formation of resist pattern by negative photolithography

b) Metal deposition of 30-nm Ti and 200-nm Au

Sucessful formation of n-contacts after liftoff

Solution: Add Piranha treatment after GaN mesa formation

DTU

Piranha: 97% H2SO4: H2O2=4:1

Bad quality of n-contacts after liftoff

Missing of n-contacts after liftoff

Most of n-contacts flaked off (about 8 survived in 96 LEDs)

100 µm

4. Conclusion:

- The fabrication process is applicable and some improvements, especially the adhesion of metal contacts, are necessary
- Using BHF to form silicon dioxide mesa instead of the RIE can reduce the cone structures in the etched areas, which is good for metal adhesion improvement
- Applying a 1-min & 40 W oxygen plasma process or 30-sec 5% HF before ncontact deposition can improve its metal adhesion
- Advantage of Piranha treatment after GaN mesa formation is not very obvious

5. Future plans:

The performance including I-V characteristics, electro-luminescence of these LEDs with good metal contact quality needs to be measured and analyzed

In the future, methods providing both good metal adhesion and device performance can be combined to fabricate LED devices

After improvement of the process, the modified methods can be applied to the Near-UV LED fabrication

L

Thank you!

April 6, 2016

Yi Wei

Multi-configuration on <6H> bulk SiC by Ag NPs growing and AI_2O_3 coating on substrate.

Objective

Since the photoluminescence (PL) effect of bulk <6H> SiC is contributed by the electron-hole pairs radiative recombination only within several hundreds of nanometers depth range under the surface of the substrate, therefore it is cruicial to break through this limitation to extract more electron-hole pairs from deeper part of the bulk material in order to achieve higher internal quantum efficiency. By applying localized surface plasmon (LSP) induced by Ag nanoparticles (NPs) growing on the top of bulk SiC, the enhanced near field around the Ag NPs can be expected to extract more electron-hole pairs from bulk SiC. In addition, an extra Al₂O₃ thin layer coating on the top of the bulk SiC after Ag NPs growing is expected to tune the λ_{peak} of PL, and it can prevent Ag NPs from being oxidized. Moreover, Ag NPs being sandwiched in two high refractive index materials is believed to scatter more internal emitted light out of the substrate.

In order to fulfill the objective, two experimental investigations have been made:

- How different temperatures of rapid thermal annealing during the formation of Ag NPs will influence the LSP effect & How different Al₂O₃ deposition method, in which atomic layer deposition (ALD) and radio frequency (RF) sputter methods are applied, will affect LSP.
- The influence of the size of Ag NPs on LSP.

Conclusions from two experimental investigations

- For Al₂O₃ deposition ~ 20nm range, there is no apparent difference by applying atomic layer deposition or radio frequency sputtering.
- Rapid thermal annealing is preferable at $350^{\circ}C$.
- For samples with Ag NPs which deposited by Ag thin film of 5nm & 10nm, λ_{peak} of PL has $\sim 10nm$ redshift.
- Photon lifetime can be decreased by adding Ag NPs on bulk SiC, in which can be further decreased by coating extra Al₂O₃ layer.

- Localized surface plasmon effect can be seen, in which the λ range of LSP depends on the size of Ag NPs.
- LSP couplings cause more absorption than scattering, this is the reason why LSP has decreased PL.

In addition, exponential fitting analysis has been applied to extract the photon lifetime from time-resolved PL measurement, and corresponding confidential range calculation and error analysis have been achieved to ensure the reliability of the fitting analysis. Triple-exponential decay model has been applied on bare SiC and SiC substrate only with Ag NPs, tetra-exponential decay model is found to be applicable on SiC with Ag NPs plus Al₂O₃ coating and also the SiC substrate only coated with Al₂O₃. However, the physical explanation behind these two exponential decay model are unknown yet, more literature study is needed in order to give credible interpretation.

To-do list

- Application of XPS analysis to investigate whether Ag NPs have been oxidized or not during ALD process.
- Literature study of time-resolved PL curve exponential decay modelling.
- Simulation of LSP of Ag NPs, find out in which size range of Ag NPs, LSP could cause more scattering than absorption of energy.

Fabrication and passivation of porous SiC

Weifang Lu

2016.04.06

DTU

Outline

1. Introduction

Passivation of the large surface area to decrease surface recombination.

- Ref: 1. S. Kamiyama, et al, Journal of Semiconductors 32 (2011) 013004
 - 2. H. Ou, et al, European Physical Journal B: Condensed Matter Physics 87 (2014) 58
 - 3. Y. Ou, et al, Optics express 19 (2011) A166
 - 4. Y.C. Lee et al. Optical Materials 35 (2013) 1236-1242

2.1 Fabrication of porous SiC by anodic oxidation method

The SiC anodic etching in HF solution could be described with two steps, oxidation of SiC and dissolution of the formed SiO₂:

Oxidation: SiC + 6OH⁻ \rightarrow SiO₂ + CO₂ + H₂O + 2H⁺ + 8e⁻

Dissolution: $SiO_2 + 6F^- + 2H^+ \rightarrow H_2SiF_6 + H_2O + 4e^-$

Schematic diagram of the experimental setup for anodic oxidation

① SiCrystal: 6H-SiC② Tankeblue: 6H-SiCThickness: 250µm, N-doped, on-axis, Si-Face polished,
MPD<100/cm²</td>Thickness: 430µm, B-N co-dopedMPD<100/cm²</td>Double sides polished with Si face CMP

2.2 Porous 6H-SiC samples ①---SiCrystal

Cross-sectional SEM images of porous sample (360min): (a) the overview of the porous layer consisting of three layers with a total thickness of $38.88 \mu m$, (b) the boundary between top layer and middle layer, and (c) the boundary between the middle and bottom layer.

Photographs of porous SiC with different etching time (a) 60 min, (b) 150 min, (c) 260 min and (d) 360 min. (d) The corresponding relationship of porous and dendritic thickness with etching time for 6H-SiC.

2.3 Porous 6H-SiC samples @---Tankeblue

Photographs and SEM images of porous SiC with different etching current: 2mA, 6mA, 10mA and 15mA.

Cross-sectional SEM images of porous sample prepared under 10 mA.

2.4 Optical properties—Reflectance and Transmittance

SiCrystal samples: (a) reflectance and (b) transmittance spectra for the flat 6H-SiC sample and the porous samples.

Tankeblue samples: (a) reflectance and (b) transmittance spectra for the flat 6H-SiC sample and the porous samples.

3.1 Passivation: atomic layer deposited Al₂O₃ and TiO₂ film

The surface chemistry reaction during $Al_2O_3 ALD$ (atomic layer deposition) deposition:

1st half-reaction: $Al-OH + Al(CH_3)_3 \rightarrow Al-O-Al(CH_3)_2 + CH_4$ **2**nd half-reaction: $Al-O-Al(CH_3)_2 + 2H_2O \rightarrow Al-O-Al(OH)_2 + 2CH_4$

As the similar deposition process for TiO_2 thin films, the reaction is also divided into the following two half-reactions:

1st half-reaction: Ti-OH + $TiCl_4 \rightarrow Ti$ -O- $TiCl_3$ + HCl**2**nd half-reaction: Ti-Cl + $H_2O \rightarrow Ti$ -OH + HCl

Cross-sectional SEM images of porous sample (360 min): (a) top layer, (b) middle layer and (c) bottom layer covered with 20 nm thick TiO₂.

3.2 Passivation effect of Al₂O₃ and TiO₂

3.3 Passivation optimization: deposition temperature

(c)Deposited at 200deg (a)Deposited at 120deg (b)Deposited at 160deg 100 nm 200 nm EHT = 10.00 kV 200 nm EHT = 10.00 kV Stage at T = -0.3 Signal A = InLens Date :22 Sep 2015 Signal A = InLens Stage at T = +0.3 * EHT = 10.00 kV Signal A = InLens Date :22 Sep 2015 Stage at T = -0.3 Date :22 Sep 2015 WD = 5.1 mm Mag = 200.00 K X Width = 1.501 µm Time :16:53:55 WD = 4.8 mm Mag = 200.00 K X Width = 1.501 µm Time :16:45:59 WD = 5.0 mm Mag = 200.00 K X Width = 1.501 µm Time :16:35:08

3.4 Passivation optimization: thickness, annealing temperature

PL spectra of porous 6H-SiC sample: with different Al_2O_3 thickness and annealing condition. The optimized parameters are 20nm Al_2O_3 deposited at 160deg, annealing for 15min, annealing at 350deg.

11

3.5 Discussion

♦ Quantum size effect: The calculated exciton Bohr radius of 6H-SiC and 4H-SiC is 0.7 and 1.2nm, respectively. The exciton Bohr radius of SiC can be calculated according to the following function :

$$R = \frac{4e\varepsilon_0\varepsilon_r\hbar^2}{\mu_0e^2} = \frac{0.053\varepsilon_r}{\mu_0/m_0} \qquad \mu_0 = m_e m_h/(m_e + m_h)$$

Surface states: The PL of porous SiC is very sensitive to the surface, which leads to carrier trapping and/or surface recombination. Passivation of surface states could decrease the non-radiative recombination rates.

Al₂O₃ and TiO₂ passivation: chemical passivation --- hydrogen saturation of the dangling bonds; field-effect passivation --- high negative fixed charge density on the interface.

Competition between surface passivation and oxidation: if the surface area of porous SiC is oxidized by Al₂O₃ during annealing process, the PL intensity maybe decrease and red shift.

4. Conclusion

- 1. Porous structures have been fabricated on Tankeblue and SiCrystal 6H-SiC substrates by using anodic oxidation method.
- 2. The effects of etching time and current on morphology and optical properties have been investigated.
- 3. Compared with the uncoated porous SiC, the Al_2O_3 or TiO₂ coated porous samples exhibit a strong enhancement of photoluminescence, which is attributed to the decrease of non-radiative recombination.
- 4. The passivation conditions have been optimized: 20nm Al₂O₃, deposited at 160deg, annealing for 15min, annealing at 350deg.

Thank you!

182818284

 $f(x + \Delta x) = \sum_{i=0}^{\infty} \frac{(\Delta x)}{i!}$

Department of Photonics Engineering Technical University of Denmark

Email: yiyo@fotonik.dtu.dk

Outline

- 1. Introduction
- 2. Fluorescent SiC with hybrid structures
- 3. InGaN/GaN LED with nanopillar structures
- 4. Summary

1. Fluorescent SiC based white LED

F-SiC monolithic white LED

1. Fluorescent SiC

6H-SiC:

- Large refractive index 2.7@580nm
- Large internal reflection
- Low light extraction efficiency 3.4%
- Use nanostructure fabrication

Previous work of nanostructures on f-SiC:

Epitaxial

laver

Substrate

Top escape Side escape

cone

cone

2. F-SiC with hybrid structures

Fabrication of hybrid structures:

- A combination of micro-structure (~3µm) and nano-structure (100-200nm)
- Method: special photolithography with nanopatterning

2. F-SiC with hybrid structures

- Combined hybrid structure shows larger luminescence enhancement than pure nano- or micro-structure on f-SiC
- Feature size of $\mu\text{-structure: }3\mu\text{m}$
- Feature size of n-structure: 100-200nm

3. Nanopillar nitride-based LED

Problem in normal nitride-based LED:

- larger internal strain due the lattice mismatch between InGaN and GaN in QWs
- Limited IQE caused by so-called quantum confirmed Stark effect (QCSE)

Method to reduce QCSE:

Fabricate nanopillar structures on LED epi-wafer

3. Nanopillar nitride-based LED

- Significant luminescence enhancement: more than 4 times
- Larfer optical modulation bandwidth: 221.2MHz→312.2MHz

4. Summary and outlook

Summary:

- Fabrication of hybrid structure on f-SiC \rightarrow luminescence enhancement of f-SiC
- Nanopillar fabrication on nitride-based LED \rightarrow luminescence enhancement /increased modulation bandwidth of LED

Future work:

- Optimize the luminescence performance of nanostructured f-SiC
- Apply nanopillar structure on NUV LED
- To realize a nanopillar LED device with enhanced electroluminescence

Acknowledgement

Innovation Fund Denmark: 'LEDSiC' project (no. 4106-00018B)

Questions

Thank you for your attention!

